

Specifications for
Autonomous Decentralized Protocol

R 3.0

MSTC/JOP 1101 (1999 September 30)

Distributed Manufacturing Architecture Committee

Japan FA Open Systems Promotion Group

MANUFACTURING SCIENCE & TECHNOLOGY CENTER

MANUFACTURING SCIENCE & TECHNOLOGY CENTER

Japan FA Open Systems Promotion Group
Distributed Manufacturing Architecture Committee

The protocol specifications defined in these

specifications include patents, which MSTC

is licensed for standard licenses from third

parties without charge. The readers of

these specifications must conform to the

notes in the foreword to the body of the

specifications.

i

Contents

Foreword .. 1

Introduction... 2

1 Scope... 2

2 Requirements for Protocol... 3
2.1 Required Layer .. 3
2.2 Required Communication Protocol... 3

3 Terms and definitions .. 4
3.1 ADP.. 4
3.2 Devices ... 4
3.3 LAN Segment.. 4
3.4 Logical Node.. 5
3.5 Data Field (DF).. 5

3.5.1 Local Data Field ... 6
3.5.2 Remote Data Field .. 6

3.6 Domain.. 7
3.7 Multi-cast Group... 8
3.8 Broadcast .. 8
3.9 Multi-cast Communication... 8
3.10 Peer-to-Peer Communication .. 8
3.11 Alive Signal.. 9
3.12 Fault Information .. 9
3.13 Application Program (AP)... 9
3.14 Protocol Data Unit (PDU) .. 9
3.15 Message .. 9
3.16 Transaction ...10

3.16.1 User Transaction ...10
3.16.2 System Transaction ...10

3.17 Implementor ..11
3.18 User ...11

4 Protocol Functions.. 11
4.1 Class Base-1 (Multi-cast Communication) ...11

4.1.1 Function...11
4.1.2 Managing Multi-cast Group ..12

4.2 Class Base-2 (Transmitting Alive Signal)...14
4.2.1 Function...14
4.2.2 Types of Transmitting Alive Signals...15
4.2.3 Alive/dead Judgement with Alive Signals ..16
4.2.4 Assigning UDP Port Numbers...17

4.3 Class Opt-2-a (Transmitting Fault Information) ..19
4.3.1 Function...19

ii

4.3.2 Fault Information...19
4.4 Class-Opt-3 (Peer-to-Peer Communication) ..20

4.4.1 Function...20
4.4.2 Managing TCP Connection for Peer-to-Peer Communication............................21

4.5 Test Support..23
4.5.1 Function...23
4.5.2 Message Modes...23
4.5.3 Node modes..24
4.5.4 Message Transmitting/Receiving Control..24
4.5.6 Assigning Multi-cast Receiving Ports ...24
4.5.6 Operations of Test Support...25

4.6 Controlling Message Priorities ..26
4.6.1 Function...26
4.6.2 Message Priority Levels..26
4.6.3 Prioritizing Messages ...26

4.7 Sequential Numbering for Message Management ..27
4.7.1 Function...27
4.7.2 Message Transmission Sequential Number ...27
4.7.3 Versioning of Message Transmission Sequential Number27
4.7.4 Managing Message Sequential Numbers ...29

4.8 Dividing and Combining Message ...29
4.8.1 Function...29
4.8.2 Information for Dividing and Combining Message ...29

4.9 Associative Array Protocol ..30
4.9.1 Message structure ...30
4.9.2 Structure representation ...31
4.9.3 Encoding example..32

5 PDU Structure and PDU Encoding.. 34
5.1 PDU Structure ..34
5.2 Class Base-1 PDU (for Multicast Communication) ..36
5.3 Class Base-2 PDU (for Alive Signals) ..37
5.4 Class Opt-2-a (fault information) ..39
5.5 Class Opt-1 PDU (for Peer-to-Peer Communication) ..41

6 Conformance.. 42
6.1 Requirements for conformance...42

Appendix A (Informative) TCD for System.. 43

Appendix B Vendor Code List.. 44

Appendix C (informative) Notes on Implementation... 45
C.1 Message length ...45
C.2 TCP connection management...45

C.2.1 Supplementary control information for connection ...45
C.2.2 Fault detection for peer-to-peer communication path ..45
C.2.3 Other notes ..46

iii

C.3 Message priority control...46
C.4 TCD Access Control...47
C.5 Logging statistic information for state change in node ...47
C.6 Extensibility...48

Appendix D (informative) Procedure .. 49
D.1 Transmitting/Receiving multicast communication ...49

D.1.1 Transmitting ..49
D.1.2 Receiving ..49

D.2 Peer-to-peer transmission and reception..50
D.2.1 Transmitting ..50
D.2.2 Receiving ..51

D.3 Transmission number and version number management52
D.3.1 For multicast communication...52
D.3.2 For peer-to-peer communication ..55

D.4 Dividing and assembling messages..57
D.4.1 Dividing and assembling messages ...57
D.4.2 Header information for fragmentation and assembly ...58
D.4.3 Message fragmentation algorithm ...59
D.4.4 Message assembling algorithm ...60

D.5 Node availability monitoring..64
D.6 Fault information transmission ..65

Appendix E (informative) Sample Implementation.. 66
E.1 Byte order problem..66
E.2 Alignment problem...68
E.3 Alive signal..69

E.3.1 Conditions..69
E.3.2 Alive signal message setting values..69

E.4 Creating Fault Information..71

Appendix F (informative) Example... 72
F.1 Displaying node status ..72
F.2 Displaying fault information...73
F.3 Specifications on error messages for system monitoring tools74

Appendix G (informative) Purpose of Autonomous Distributed System....................... 75
G.1 Purpose of autonomous decentralized system..75
G.2 Features of autonomous decentralized system..76

Appendix H (informative) Purposes of Associative Array... 77
H.1 Features ...77
H.2 Concept of This Implementation Draft ..78

1

Specifications for Autonomous Decentralized Protocol
MSTC/JOP 1101 (1999 September 30)

Foreword

These specifications define the functionality and protocol of the autonomous decentralized
interface planed by the Distributed Manufacturing Architecture Committee of the Japan FA Open
Systems Promotion Group under the Manufacturing Science and Technology Center
(hereafter called the Supplier).

Note that the protocol specifications defined in these specifications include patents, which the Sup-

plier is licensed for standard licenses from third parties without charge. The users of the specifications

are licensed for standard licenses regarding to the pertinent patents only when manufacturing or

marketing their products conforming to the regulations defined under the specifications. The standard

licenses shall not exist initially in relation to the users concerned with the specifications when they

insist on their rights based on the patent related to the target products to the third party licensed for

the standard licenses

The Supplier will provide the technical support on the specifications on its own authority, however,

third parties introduced by the Supplier may provide technical support with extra costs.

The users of the specifications must observe the following restrictions:

- The users of the specifications cannot modify their contents except when the Supplier approves the

modification.

- The users of the specifications can use them without charge to manufacture, create, use or market

hardware or software products (hereafter called Target Products) provided they observe the func-

tional specifications in the specifications and intend to use them on Ethernet.

- It is the sole responsibility of the manufacturer to operate a product that it has created based on the

specifications, and the Supplier will undertake no responsibility.

2

Introduction

Many a traditional communication protocol standard is based on the peer-to-peer communic ation. The
peer-to-peer communication is easy to recognize delivery, which has many advantages when providing a
communicating way with high liability. On the other hand, it is accompanied with various difficulties in
case of (i) monitoring by other nodes except the transmitter node and the receiver node, (ii) backup when
a receiver node goes down, (iii) modifying the destination node address information in the transmitter
nodes when the system is modified or expanded, and so forth. Especially, in case of decentralized systems
such as manufacturing automation systems, they bring a serious problem.

The autonomous decentralized system, based on the broadcast communication, is such a system that
works with each node autonomously choosing information to function as a whole.
It is characteristic of the broadcast communication with no specific correspondent that the above men-
tioned problems do not occur.

The autonomous decentralized protocol is defined as a communication standard that should be used in
such a system.

It uses exactly TCP, UDP/IP and Ethernet diffused widely as open communication networks and pre-
scribes the items requested to the autonomous decentralized system on them.

1 Scope

The specifications define the following items about the communication protocol (called Autonomous
Decentralized Protocol) based on the concept of autonomous decentralization.
(1) ADP whose lower layer is TCP, UDP/IP or Ethernet
(2) Functionality of the protocol
(3) Encoding per protocol data
(4) Functional restrictions required by the implementation applicable to the specifications

3

2 Requirements for Protocol

2.1 Required Layer

Figure 1 shows Layer required for implementing the functionality of Autonomous Decentralized Protocol
defined by the specifications.

Application Programs

Autonomous Decentralized Protocol defined by
the specifications

TCP/IP, UDP/IP

Ethernet based on IEEE 802.3

Figure 1 Required Layer

2.2 Required Communication Protocol

Before installing the ADP on a device, make sure that an Internet protocol (IP) conforming to any of the
RFCs listed in table 1 has been installed on the device.

Table 1 Required RFCs

OSI layer Protocol Compliance target
 (RFC number) Compliance level Remarks

Physical
layer

 IEEE 802.3 compli-
ance

Mandatory

Ethernet frame RFC 894 Mandatory Data-link
layer ARP RFC 826 Mandatory

IP RFC 791 Mandatory
ICMP RFC 792 Optional
For broadcast RFC 919, RFC 922 Mandatory

Network
layer

For sub-network RFC 950 Recommended *1, *2
UDP RFC 788 Mandatory Transport

layer TCP RFC 793, 761, 675 Optional *3
NOTE:
*1: For devices not supporting the sub-networking, the system constraints must be spelled out.
*2: For any device not supporting the sub-networking, the operating manual must spell out the constraints

as follows:
 "The product does not support the sub-networking. Any system using the product cannot be

built into a system using sub-networking."
*3: Mandatory for supporting peer-to-peer communication

4

3 Terms and definitions

3.1 ADP

ADP (Autonomous Decentralized Protocol) is the communication protocol that is defined by the specific a-
tions.

3.2 Devices

Devices refer to the system components connected to a LAN, including physical controllers, calc ulators or
controlling equipment.

3.3 LAN Segment

A LAN Segment refers to the extent of more than one LAN component connected through repeaters
and/or bridges where one Ethernet frame can be transferred, or a LAN extent that is identified with one IP
address.

Figure 2 LAN segment

LAN segment

LAN segment 1

Repeater Bridge

Router

5

3.4 Logical Node

Logical Nodes refer to devices belonging to a data field. Within a data field, a number uniquely identifies a
logical node is called a Logical Node Number (LNN). Unique LNN is assigned to each of devices in the
range of 1 to 4095. Logical node number 0 is reserved for communication within the current node.

Figure 3 Logical node and logical node number

3.5 Data Field (DF)

DF is an area where ADP messages consisting of information of specific characteristics can flow. Com-
munication using ADP is available between nodes belonging to one data field. This means that any device
in a system must belong to one or more data field. One data field is configured per network address or
sub-network address of an IP address. Within a decentralized system, a number uniquely identifies a data
field is called an Data Field Number (DFN). Unique DFN is assigned to each of data fields within the
system, in the range of 1 to 255. Data field number 0 is reserved for communication within the current
node.

NOTES:
- No data field can be set up across multiple LAN segments. Every LAN segment must be assigned with

DFN.
- One LAN segment may contain more than one data field.

DFN1

DFN2

Node number 2

Device 1 Device 2 Device 3

Device 4

Device 5

Node number 3 Node number 4

Node number 1

Node number 2

6

Figure 4 Data field and data field number

3.5.1 Local Data Field

A local data field is a data field where the current node is directly connected.

3.5.2 Remote Data Field

A remote data field is a data field where the current node and other nodes are connected through routers
or gateways. For example, in Figure 5, data fields 1 and 2 are local to node 1 since they are connected
directly to node 1, while data fields 3 and 4 are remote to node 1.

Figure 5 Local data field and remote data field

Data field (DFN 1)

ADP

AP AP AP AP AP AP

Message

LAN

ADP ADP

Node 1 Node 2 Node N

Current node

DFN1 DFN2

DFN3

DFN4

Remote data
field

Node 1 Node 1

Node 1

Router Router

Router

Node 2

Local data
field

7

3.6 Domain

A domain refers to an upper concept of data fields, is a group of data fields. Generally each domain is
defined as a local site, and connected with other domains through wide area communication networks.

Within a system, a number uniquely identifies a domain is called a Domain Number (DNN). Unique DNN
is assigned to each of domains in the system in the range of 1 to 64. If domain number 0 was specified
(i.e., a domain number was omitted), the system assumes the same domain has been specified. DNN 0 is
reserved for the current DNN.

Figure 6 Domain and domain number

Domain

WAN

Domain Number 2

Domain
Domain Number 3

Domain Number 1

Domain

8

3.7 Multi-cast Group

A multi-cast group refers to a group of nodes set up within a data field. A multi-cast group must be speci-
fied to perform multi-cast transmission. Any node must belong to a multi-cast group to be used for
multi-cast reception. One data field can contain more than one multi-cast group. Each node can be added
to more than one multi-cast group as far as the groups are within a data field to which the node belongs.
Multi-cast Group Number(MGN) is a number uniquely identifies a multi-cast group within a data field.
Unique MGN is assigned to each of multi-cast groups in the data field in the range of 1 to 255. MGN 0 is
reserved for the system to send/receive alive signals.

Figure 7 Multi-cast group and multi-cast group number

3.8 Broadcast

A broadcast refers to simultaneous transmission to all the nodes, where all the nodes receive the transmit-
ted message.

3.9 Multi-cast Communication

The multi-cast communication is one of the transmission methods defined by the ADP, which communi-
cates based on broadcasting through the UDP protocol. In this communication, one and the same message
is sent to more than one node belonging to the multi-cast group that once requested the system for trans-
mission.

3.10 Peer-to-Peer Communication

The peer-to-peer communication is one of the transmission methods defined by the ADP, which commu-
nicates based on the TCP. Before transmission, a peer-to-peer communication path (TCP connection) is
established between both the end nodes. When AP requests for transmission, a communication message is
sent to the specified target node.

 Data Field (DFN1)

. Node 1 Node 2 Node 3 Node

MGN1
GN

MGN2
GN

MGN3
GN

MGN4
GN

9

3.11 Alive Signal

An alive signal refers to a message broadcasts to all other nodes in the same data field periodically to notify
all the others in the field that it is alive.

3.12 Fault Information

Fault information refers to a message that a node periodically broadcasts to all the other nodes within the
same data field to notify all the others in the field of the information on a fault occurred on the node.

3.13 Application Program (AP)

AP refers to an upper layer program used for application processing, including user processes and applic a-
tions.

3.14 Protocol Data Unit (PDU)

PDU refers to a data unit passed to ADP from a lower layer and vice versa. It consists of a ADP header
and data sections.

Figure 8 Message and PDU

3.15 Message

A message refers to the basic data unit passed to ADP from an upper layer and vice versa.

 AP

Request for transmission

Data field

ADP

Transmission to LAN Receiving from LAN
MTU

Ethernet
header

IP
header

UDP
header PDU

ADP
header Data

ADP
header Data

Ethernet
header

IP
header

UDP
header PDU

ADP
header Data

ADP
header Data PDU

Ethernet
frame

AP

Request for receiving

Message Message

10

3.16 Transaction

A transaction refers to a process within AP or system. A code uniquely identifies a transaction is called a
Transaction Code (TCD). AP specifies TCD before transmitting a message, or receives the information
necessary for a UP process (transaction). The ADP includes TCD in the ADP header for communication.
A unique TCD must be defined for each data field. There are two transaction types, the user and system
transactions. The following ranges are allocated to the TCDs for users and for system:

3.16.1 User Transaction

A user transaction refers to a transaction within AP, application processing. A code identifying the associ-
ated user transaction (TCD for users) is assigned to every application process performed by a user.

3.16.2 System Transaction

A system transaction refers to a transaction generated when ADP detects any event (e.g., fault status or
internal status change) and is used as a notice to AP. The codes identifying system transactions (TCDs for
system) are used by implementors of various protocol functions.

AP must send/receive any message with TCD for the system independently of the node mode (Online or
Test mode) or I/O control. Attached document A lists the relation between the system transactions and
system TCDs.

The specifications only define the equation: TCD=60003 (alive signal)

Figure 9 Transaction code

TCD for users: 1 to 59999

TCD for system: 60000 to 65534

 Node 2

Data field

Node 1 Node N

TCD1

Message provided
with system TCD

Message provided
with user TCD

Reception
request for
TCD1

ADP

AP AP AP AP AP

ADP ADP

AP
Reception
request for
TCD1

Reception
request for
TCD1

Transmission
request for
TCD1

Message

11

3.17 Implementor

An implementor refers to an enterprise or person that implements the ADP on a device.

3.18 User

A user refers to an end user who combines ADP-mounted devices to construct and use a system.

4 Protocol Functions

4.1 Class Base-1 (Multi-cast Communication)

4.1.1 Function

The transmitter sends a message associated with a TCD on a multi-cast transmission to a multi-cast group
within a specified data field. The nodes within the specified multi-cast group automatically accept only the
messages with required TCDs. Since this method does not specify any target address, extensible commu-
nication is available.

Before receiving the message on the multi-cast transmission, the nodes must have been added to the
multi-cast group. If sending messages to all the nodes within one data field is required, all the nodes must
have been added to the same multi-cast group.

NOTES (features of multi-cast communication):
- Provides communication platforms for autonomous decentralized system.
- Efficient method allowing simultaneous transmission of one and the same message to more than one

node (one-to-multiple communication)
- Suitable for real-time data communication.
- Effective when transmitting periodically-generated-data to more than one node at once.

Figure 10 Multi-cast communication

ADP

Data Field

ADP

Node 1 Node 4

ADP ADP

Node 2 Node 3

Multi-cast group (MGN2)

 (Nodes 2 and 3 belong to multi-cast group 2.)

Since the
receiver
has not
been
added to
the
multi-cast
group, the
received
data is
discarded

12

Figure 11 Sending/Receiving multi-cast communication

A multi-cast communication is the upper protocol of the UDP protocol. Data sent over a multi-cast trans-
mission is broadcast to a LAN and received by nodes. If the current node has not been added to the target
multi-cast group of the received message on the ADP level, the message is discarded, while if the node has
been added to the group, ADP passes the message to AP.

Figure 12 UDP-based communication

4.1.2 Managing Multi-cast Group

A multi-cast group is the group of the nodes defined within a data field. Each of the nodes can be added or
removed from the multi-cast group as necessary.

4.1.2.1 Assigning MGN and UDP Port Number

MGNs can be assigned with numbers between 1 and 255. Multi-cast number 0 is reserved by the system
for the activity report. A UDP port must be assigned to each message mode received by multi-cast groups

 Node 1 Node 2

TCD=530
MGN2

Node 3

Nodes 2 and 3 belong to
multi-cast group 2.

AP

Request for receiving message of DFN = 1
and TCD = 530

Node 4

DFN1

DFN=1,
MGN=2,
TCD=530

Request for receiving message of DFN =1
and TCD = 530

Request for
transmission

AP

IP

Ethernet

AP

ADP multi -cast
communication

UDP(BC)

IP

Ethernet
BC: Broadcast

ADP multi -cast
communication

UDP(BC)

13

(see "4.5 Test Support").

The relationships between the message modes of MGNs and UDP port numbers must be consistent within
a data field and managed by data field basis.

4.1.2.2 Adding and Removing to/from Multi-cast Group

4.1.2.2.1 Addition
A node is associated to a UDP port number identifying a multi-cast group when an event including starting
the system occurs, and added to the multi-cast group.
Example: Adding procedure for a device using a socket
(a) Generate a socket for multi-cast MGNi with the Internet protocol and datagram type.
(b) Bind the node to the socket with the wildcard address (IP address) and the UDP port number assigned
to MGNi.
(c) Tune the buffer size of the receiving socket based on the received traffics.

4.1.2.2.2 Removing
This section describes how to release the connection between the node and UDP port number made when
adding to the multi-cast group. Releasing the connection removes the node from the multi-cast group.
Example: Removing procedure for a device using a socket

Figure 13 Adding and removing to/from multi-cast group

MGN=1 MGN=3

55001 55002 55003

MGN
of NX

UDP port
number

IP address

NOTE:
Any packet
broadcast to a UDP
port number not
bound is discarded.

Node

Addition Removing
Socket

bind bind

Data Field

MGN=2

To MGN3

Socket

AP

close

To MGN2 To MGN1

IP address
= 0

Addition

14

4.1.2.3 Creating Multi-cast Transmitting Port

This section describes how to assign a source UDP port number used for sending to a multi-cast group to
a data field unit.

NOTE:
It is recommended to assign such source UDP port numbers that they allow one port to send more than
one multi-cast group or allow different port numbers to be assigned to data fields. Also it is recommended
to use one and the same source UDP port number for every node within one data field.

Example: Creating procedure for a device using a socket
(a) Generate a socket for multi-cast sending with the Internet protocol and datagram type.
(b) Bind the node to the socket with the wildcard address (IP address 0) and the source UDP port num-
ber.
(c) Declare (setsockopt) that broadcasting is to be used for the socket.

4.2 Class Base-2 (Transmitting Alive Signal)

4.2.1 Function

A node transmits alive signals to the other nodes on the same data field to notify that the node is alive. This
makes the nodes on the same data field can monitor the status to each other. All the nodes belonging to
one data field must transmit the alive signals within the data field periodically as far as they can transmit
the alive signals.

Figure 14 Transmitting Alive Signal

NOTE:
The alive signals are used to manage the node configuration. When one node on the same data field re-
ceives a transmitted alive signal, it can know that the source node is alive. This makes a node belonging to
a data field can monitor the status of the other nodes (alive/dead, normal/abnormal) on the same data field
to manage or control the whole system configuration.

 WS

Data Field

PC PC Controller

Alive signal Alive signal Alive signal Alive signal

Node 3 Node 1 Node 2 Node 4

Each node broadcasts alive signals periodic ally

15

Example:
Assuming that there is node 2, whic h backs up node 1 for its applications by monitoring the alive signals
from node 1. If node 2 determines node 1 is dead, node 2 can undertake the applications on node 1, while
if node 2 determines node 1 has been resumed again, node 2 can discontinue the applications undertaken
from node 1.

4.2.2 Types of Transmitting Alive Signals

4.2.2.1 Extent of Target Data Field

Nodes transmit alive signal messages only within the data field associated to the network they are directly
connected to. This means that alive/dead judgement by monitoring the alive signals is performed locally for
each data field, therefore no alive signal message is transferred over routers to a remote data field. A node
connected to more than one data field transmits alive signal messages for each data field.

Figure 15 Target data field for alive signal transmission

Router

Data field 1

Data field 2

Data field 3

Transmits an alive signal to the
local data field directly
connected from the current
device.

No alive signal
transmission is required
by a remote data field.

16

4.2.2.2 Intervals for Transmitting Alive Signals

The intervals for transmitting alive signals must be set for each logical node. For nodes belonging to more
than one node, the intervals must be set for each data field. After a device was turned to online, it trans-
mits alive signals at the specified intervals.

Figure 16 Intervals for transmitting alive signals

4.2.3 Alive/dead Judgement with Alive Signals

Received alive signals are used by a receiving node to determine whether a source node is alive. The
receiving node determines whether the source node is alive based on the following conditions:
- If a node has received no alive signal from another node, the source node is determined to be dead.
- When a node receives an alive signal from another node, the source node is determined to be alive.
- If a node has received an alive signal from another node to determine the source node to be alive but it
does not received a new alive signal for the duration of the alive signal delay time (al_tm_out) specified in
the alive signal header for the received alive signal, the source node is determined to be dead. For details on
the process, see section "D.5 Monitoring Node Alive" of the attached document.

Elapsed
time

Stop Start

Power ON

Power OFF

Data field

Node Transmission starts as soon
as the device starts.

For the second
time and later,
transmission is
performed at the
configured
intervals.

17

Figure 17 Node status monitoring sequence based on alive signal

4.2.4 Assigning UDP Port Numbers

Alive signal messages are sent on multi-cast to the local data field of the current device. Alive signals use
multi-cast group 0. The group is reserved for broadcasting where all nodes receive the alive signals un-
conditionally, therefore, 0 is assigned to the target multi-cast group number.

For each device, a user must be able to assign any number to the target UDP port for transmission. For
each data field, user may select any number for the UDP port used by alive signals.

NOTES:
- Nodes connected to the same data field must assign one and the same number to UDP ports for alive
signals (see Figure 18).
- When the current node receives alive signal messages, a UDP reception port associated to the port
number must be generated for the received messages. For the receiving UDP port, assign the UDP port
number specified in the corresponding data field (see Figure 19).

 Alive signal transmitting node (node 1)

Alive signal receiving node (node 2)

Status with no alive signal
received during the alive
signal time-out period
(al_tm_out)

Node 1 is inactive

Alive signal

Status without alive
signal has been
received

Time

time-out period

Node 1 is active Node 1 is inactive

Alive signal Alive signal

Status without
alive signal has
been received

Status with one
alive signal has
been received

18

Figure 18 Target UDP port number for alive signal

Figure 19 Receiving UDP port number for alive signal

 Node 1

UDP
Header

Target
port
number
= N

ADP
Header

Alive
signal
header

Data f ield

N : UDP port number specified in
the data field. Assign one and
the same number to every
node for transmission

Target
MGN = 0

Node 2 Node 3

 Node 1

Target
port
number
= N
UDP
header

Target
MGN = 0

Data field

UDP port
number = N

ADP
Activates (binds) the UDP
port number for alive
signals specified in the
data field and waits for the
alive signal messages.
Receiving the alive signals
is optional.

Alive signal
header

ADP
header

19

4.3 Class Opt-2-a (Transmitting Fault Information)

4.3.1 Function

This can transmit fault information as the extended information of alive signals. When a fault condition
occurred on a node within a data field, this function notifies the other nodes in the same data field of the
information on the fault.

Figure 20 Transmitting fault information

4.3.2 Fault Information

When a node receives fault information it converts it into the following items:
- Information on activity of modules in node
This indicates the module status when transmitting.
NOTE:
The above module may be either of a software or hardware module. A module on a node is assumed to be
a source of transmitted activity information (i.e., a target of activity monitoring). Software modules gener-
ally include processes and tasks.

- Fault number (error number)
A fault number identifies the associated fault occurred within a node. It only reports on the fault after the
last transmission. If the fault has not been recovered and the system stays in the fault status, the fault
number continues to be submitted. Transmitting a fault number(s) enables a monitoring applic ation to
indicate the contents of the fault (see section F.2 of the attached document). This also allows the node
receiving fault information to identify the contents of the fault occurred on another node.

- Optional information unique to device
This indicates the fault information unique to a device in a format unique to the device.
Example:
Outputting the contents of the status register in a controller enables the monitoring application de-
scribed later to display the contents (see section F.2 of the attached document).

 WS

Data field

Node 1

PC
Controller

Occurrence of fault Fault monitoring
PC

When a fault occurs, nodes store the fault information and broadcast it.

Node 2 Node 3 Node 4

Alive signal Alive signalAlive signal
Alive signal
fault information

20

4.4 Class-Opt-3 (Peer-to-Peer Communication)

4.4.1 Function

The peer-to-peer communication is based on TCP. Before communication, one peer-to-peer communic a-
tion path (TCP connection) must be established. When AP requests for transmission, a message is sent to
the specified target node. Before the TCP connection can be used, an IP address and connection port
number must be configured appropriately for each target node.

This communication method is useful when data must be sent securely to the target node on the
one-to-one basis or bulk data transmission is required over a peer-to-peer communication path.

Figure 21 Peer-to-Peer communication

Figure 22 Peer-to-Peer communication path and transmission/reception

…..
ADP ADP ADP ADP

Data field

Node 1 Node 2 Node 3 Node 4

 Node 1 Node 3

TCD=530

DFN1

Request
for
receiving
data of
DFN=1
and
TCD=530

Pee r-to -Peer
communica -ti
on path

AP AP

Request
for

reception DFN=1,
LNN=2,
TCD=530

Request for
transmission

21

Peer-to-Peer communication positions upper of TCP. TCP between nodes transfers a transmitted
peer-to-peer communication message through a TCP connection.

Figure 23 TCP-based communication

4.4.2 Managing TCP Connection for Peer-to-Peer Communication

4.4.2.1 Connection and Assigning TCP Port Number

For a peer-to-peer communication, a TCP port unique within a node must be assigned. When a
peer-to-peer connection is established, a TCP port number defined between the two nodes is used.

Example:
Assuming that node 1 wants to connect to nodes 2 and 3 respectively. For each of the connections, an IP
address to the target node number and a target TCP port number are necessary.

As the connection information between nodes 1 and 2, IP addresses IP1 and IP2 and TCP port numbers
10000 and 20000 are used. For nodes 1 and 2 connections, the four pieces of information must be defined
respectively.

Before a connection can be established, the requester and receiver of the connection request must be
specified. The requester may fail in establishing a connection due to any cause such as an inactive target
node, however the requester should be able to retry requesting periodically. As a connection established,
peer-to-peer communication becomes available.

AP

TCP
IP

Ethernet

AP

IP

Ethernet

ADP
peer-to-peer
communication

ADP
peer-to-peer
communication

AP AP

TCP

22

Figure 24 TCP connection and assigning TCP port numbers

4.4.2.2 Peer-to-Peer Communication Status

ADP manages the connection status for a peer-to-peer communication based on the following three
statuses:

- Halt status
In this status, the target communication node has been known by the system, and the system management
table for the related nodes has been initialized. This status allows no message to be exchanged but a con-
nection with another node to be established. The Halt status indicates the TCP status, CLOSED.

- Open status
This indicates that the connection is under transition, on the way of establishing a connection. As a con-
nection is established, this status automatically replaced with the link status. This status allows no message
to be exchanged. On the way of establishing a connection means a status where establishing a connection
with the target node has been requested, and a response from the target is waited (the TCP status of
SYN_SENT) or where a request for establishing a connection with the target node is being waited (TCP
status of LISTEN or SYN_RECEIVED).

As the connection with the target is established (TCP status of ESTABLISHED), the ling status is entered.
If establishing a connection is failed, the open status is kept. If moving to the link status is instructed with
keeping the open status established, the halt status must be entered temporarily before the link status can
be entered.

- Link status
This indicates that the connection with the target node has been established and transmitting/receiving
message is available (TCP status of ESTABLISHED). If the system instructed to move to the halt status,

 Current node 1 Target node 2

IP1 IP2

IP1,2,3 : IP address

20000

TCP port number

Target node 3

IP3

30000

IP1

10000

10001

AP
AP

AP

Data field

TCP port number

TCP port numberTCP port number

23

the both nodes automatically move to the halt status. Other TCP products generally issue FINs and use the
three-way handshake sequence to release a connection, while this system uses a RESET packet to cut a
connection instantaneously. If a connection cut (receiving a RESET) or communication fault is detected
under the link status, the system automatically enters the halt status.

Figure 25 Status transition for TCP connection

4.5 Test Support

4.5.1 Function

ADP allows adding modes to a message to indicate whether it is online or under testing. Since a
node can control transmitting/receiving messages selectively based on the disciriminant mode
(online/testing), the node can eliminate any interrupting test message when it is on the way of testing.
When a node is performing a simulation test, it can receive either of the online or test message.

Figure 26 Test support

4.5.2 Message Modes

There are two types of message modes:

Halt status (0)

Open status (2)

Link status (3)

Completion of
establishing connection

Halt
instruction

Open
instruction

Link
instruction

Instructs halt if
cut connection
with target node
or
communication
fault is detected.

Halt instruction
Halt instruction
Link instruction

Open instruction

: Online message : Test message

Data field

ADP ADP ADP ADP

Discard

The online nodes discard test
messages but receive online
messages.

The test nodes receive either of
the online or test message and
perform testing.

Online
node 1

Online
node 2

Test
node 3

Test
node 4

Discard

24

(1) Online
(2) Test

4.5.3 Node modes

There are two types of node modes:
(1) Online
(2) Test

4.5.4 Message Transmitting/Receiving Control

The following table shows the relations between the message and node modes that can be used to control
message transmission/reception.

Table 2 Relation between message transmission/reception

Online Test Node mode

Message mode Transmission Reception Transmission Reception

Online

Test Discard

4.5.6 Assigning Multi-cast Receiving Ports

To receive only online mode messages at an online node, use one UDP port per multi-cast group.

To receive either of online or test mode messages at a test node, use one UDP port for online messages
and another for test messages.

NOTE:
When associating different UDP ports for online and test mode messages within one multi-cast group,
consistency must be retained across the nodes within one data field.

: possible : impossible

25

Figure 27 MGN and reception port

This avoids test mode messages from disturbing online nodes even if online and test nodes can reside on
the same data field, since different ports are used for online and test mode messages. Especially when
using devices that do not receive messages through undefined ports on a hardware level, it is effective to
relieve the CPU load.

Example:
Figure 28 shows the relations between multi-cast group numbers, 1 to 255, and UDP numbers (online and
test modes).

Multi-cast group number 1 2 3 …… 255 Target MGN

UDP port number (online) 55001 55002 55003 …… 55255

UDP port number (test) 57001 57002 57003 …… 57255

UDP protocol
level targets
Port numbers

Figure 28 Assigning MGN and UDP port numbers

4.5.6 Operations of Test Support

(1) Transmitter Side
The transmitting node passes the mode of a message to be transmitted into the message mode (MODE) in
the ADP header and sends the message.

(2) Receiver Side
If the current node is in the online mode, the reception node checks the message mode (MODE) in the
ADP header and discards any test message but receives online messages. Since discarding a test message
is not assumed to be a problem, it is not necessary to issue a fault information for discarding. If the cur-
rent node is in the test mode, either of test or online message is accepted.

 Node A
(online node)

Node B
(Test node)

AP AP

Node C
(online node)

Node D
(Test node)

AP

AP

DF

MGN Online
message

Test
message

Does not
receive
since it is
not defined

Performs a test, receiving either of
online and test mode messages

- Test port

- Online port

26

4.6 Controlling Message Priorities

4.6.1 Function

This prioritizes messages to schedule transmission and reception of them. This avoids a message with a
lower priority from interrupting the transmission or reception of a message with a higher priority.

4.6.2 Message Priority Levels

There are seven message priority levels as shown in table 3. To nodes with no message prioritization
implemented, node message priority 0 is assigned.

Table 3 Priority level assignment

Level Priority Use Operator

0 None Out of priority control

1 High Message with highest priority for users

2
. . .

. . .

7 Low Message with lowest priority for users

Users

4.6.3 Prioritizing Messages

4.6.3.1 Transmitter Side

- The transmitting node assigns one of priority levels 1 to 7 depending on the priority of the transmitted
message, passes the specified message priority level to the message priority level (PRI) in the ADP header
of the message's PDU and sends the message.
- If the transmitting node is not implemented with the message prioritization, it passes 0 to the message
priority level (PRI) in the ADP header and sends the message.

Figure 29 Message prioritizing at transmitter

Application data
with lower priority

2
Data queued for
transmission

Data field

1

3

3

Level 3

Level 1

ADP

Request for
transmitting data 3
after data 1 and 2

Data 3 jumps data 1
and 2 for
transmission

Application data
with higher priority

27

4.6.3.2 Receiver Side

- The receiving node checks the message priority level (PRI) referring to the ADP header of the received
message. If the level is within 1 to 7, the node receives the message based on the specified priority level
and pass it to AP.
- If the node receives a message with priority level 0, it converts the priority level based on the priority
level defined previously for priority level 0 message and processes it. The lowest priority level is generally
used for processing a priority level 0 message.

Figure 30 Message priority control at receiver Priority level conversion

for priority level 0

4.7 Sequential Numbering for Message Management

4.7.1 Function

The receiver numbers the message transmission sequentially and makes versioning for the sequential
numbering to eliminate missing messages.

4.7.2 Message Transmission Sequential Number

Messages are numbered sequentially to detect a missing message.

4.7.3 Versioning of Message Transmission Sequential Number

This is used to detect resetting the sequential numbering for message transmission. It is generated when-
ever the sequential numbering for message transmission is initialized.

NOTE:
If the transmitting node is shut down and the sequential numbering is reset, the receiving node may mis-
understand that the sequential numbering was missed. To avoid this problem, versioning is performed on

Priority
level 0 Data

Node

Node

Converting
level

7

AP
Processes
message
assuming
level 7
until it is
passed to
AP.

Receiving a level 0 message

Data field

Priority levels 1 to 7 are used

28

the sequential numbering of message transmission. It is recommended to use time stamp for versioning.
Figure 31 shows an example of using the time stamp for versioning and how it works.

Figure 31 Versioning of sequential number

Sequential version number

A A

X X

1

AA

BB

Time

2

Avoid incorrect
discarding

1 11:28

AA

BB

100 11:28

12:50

A 1 11:28

X 100

AA 12:50

Node 1 Node 2

11:28

1 11:28

0 0

12:50

1

2 12:50

12:50

1

BB 12:50 2

System down

Initialize
sequential

Initializing sequential
numbering

Updating version
numbering

Comparing
version numbers

Detect reset

29

4.7.4 Managing Message Sequential Numbers

4.7.4.1 Transmitter Side

The transmitting node maintains the message transmitting sequential numbers and versioning of the se-
quential numbers. When transmitting a message, it passes the message transmission sequential number
(SEQ) of the message's PDU and the versioning of the message sequential numbers (V_SEQ), and sends
the message.

4.7.4.2 Receiver Side

The receiving node maintains the most recently received sequential number and the most recently received
versioning of the received sequential number for each message source node. It checks the message trans-
mission sequential number (SEQ) and the versioning of the message sequential numbers (V_SEQ) in the
ADP header of the received message's PDU. If the versioning of the sequential numbers of the received
message differs from the most recent versioning of the sequential number, the receiving node assumes
resetting has occurred on sequential numbering, assumes the most recently received sequential number as
the sequential number of the received message.

If the versioning of sequential number matches with the most recent versioning of the sequential number
but the sequential number of the received message has been missed, it is assumed to be omission of
sequential numbering.

For details on the sequential numbers and versioning of sequential numbers for the multi-cast and
peer-to-peer communications, see section D.3 of the attached document.

4.8 Dividing and Combining Message

4.8.1 Function

If the total of the TCP/UDP, IP protocol, ADP header and message body sizes is larger than MTU, the
message transmitter divides the message into more than one PDU before transmission. When the message
receiver receives PDUs, it combine them into the original one message.

4.8.2 Information for Dividing and Combining Message

The following are the information used when performing dividing and combining on a message.
CBN: Current fragmented PDU number (PDU number starts from 1)
TBN: Total number of fragmented PDUs
BSIZE: PDU size
ML: Message length + 64 (in byte)
SEQ: Sequence number of message
The transmitting node passes the above information to the ADP header of the message's PDU. The re-
ceiving node checks the ADP header of the received message's PDU to combine the fragmented message
components.
For details on performing dividing and combining on a message for the peer-to-peer communic ation, see
section D.4 of the attached document.

30

4.9 Associative Array Protocol

4.9.1 Message structure

The information describing data items comprising a message and values in the data items together form
application data.
The information describing data items includes names and types, and the protocol draft uses ASN.1
(IEC8824/8825) as encoding rules and the data types regulated in IEC61131-3 as the basic data types.

Figure 32 Message structure

MSTC header: Indicates the structure of data section. Specify in the big endian.

Table 4 Header format

Item name Description

Header type Header identifier in ASCII. Fixed to "MSTC."
Endian Endian type of the data value in the data section.

1 = Little, 2 = Big, 3 = None
Ver Version of the protocol. Fixed to 1.
Encode Indicates the use of data section.

1 = Data value only (general type)
2 = Data value and item information (integrated type with item description,
and is the draft type)

Code Indicates the code scheme of the string used in the data section

ADP header

MSTC header

Data section

0

+64

0 31

Reserved for future uses

Header type

Endian Encode

15

+4

+8

+12

Ver Code

Name

Value

Name plus value

Structure

Length

Encoding format

Value only

+76

Value

Name

Value

Name

Value

Value

Value

Value

31

4.9.2 Structure representation

4.9.2.1 Basic data type (for details, see IEC61161-3.)

Table 5 Basic data type

Data type name
Data type code

(in hex.)
Description

BOOL C1 Logical value(TRUE/FALSE)

SINT C2 Signed 8bit integer

INT C3 Signed 16bit integer

DINT C4 Signed 32bit integer

LINT C5 Signed 64bit integer

USINT C6 Unsigned 8-bit integer

UINT C7 Unsigned 16-bit integer

UDINT C8 Unsigned 32-bit integer

ULINT C9 Unsigned 64-bit integer

REAL CA 32-bit floating point

LREAL CB 64-bit floating point

STIME CC Information on synchronizing time

DATE CD Date

TIME_OF_DAY CE Time

DATE_AND_TIME CF Date and time

STRING D0 8-bit string

BYTE D1 8-bit column

WORD D2 16-bit column

DWORD D3 32-bit column

LWORD D4 64-bit column

STRING2* D5 2-byte string

FTIME* D6 Duration [High resolution]

LTIME* D7 Duration [Long precision]

ITIME D8 Duration [Short precision (same as the INT type)]

STRINGN* D9 N-byte string

SHORT_STRING* DA 8 bit (1-byte flag)

* Any item marked with an asterisk (*) is an extension not comprising with IEC61131-3.

4.9.2.2 Structure and array representations

For structures and arrays, two types of structure/type shall be provided: one with a name and value for

32

each component and the other with only a value for each component.

Table 6 Structure and array representations

Data type
name

Data type
code (in hex.)

Description

ANY_STRUCT E0 Structure or array with each component having a name (in-

cluding a type and length) and value (including a type and

length) pair

SEQ_STRUCT E1 Structure or array with each component having only a value

(including a type and length).

4.9.3 Encoding example

4.9.3.1 Data items of basic data type (with a name and value)

Example) UINT item=5;

Figure 33 Encoding example 1

4.9.3.2 Data with time attribute (with a name, value and time information)

Example) ANY_MAGNITUDE ::= {
ANY_NUM
TIME_OF_DAY

}

Figure 34 Encoding example 2

Name

Value

Structure : 0xD0 Length : 6

“item”

charcount:4

0 15 7

+2

+4

+8

+10

+12
5

String length
Area length

Structure : 0xC3 Length : 2

“PV_128” Structure:E1 Length:12

Item name Name

02L

1036800

Item value
(DINT type)

Time
(TOD type)

Structure:C4

Structure:CE

Length:4

Length:4

charcount:6
Length:8 Structure:0xC5

33

4.9.3.3 String array

Example) STRING str2[2]

Figure 35 Encoding example 3

4.9.3.4 Data items of array and structure

Example: struct { DINT item01; DINT item02[2]; } struct1 = { 01L, { 02L, 03L } };

Figure 36 Encoding example 4

“str2”

Item name
charcount:4 Name

Length:18

“string”

charcount:6

“string22”

charcount:8

Structure:C5

Structure:0xC5 Length:6

“struct1” Length:38

Item name section

item01

item02

charcount: 6

“item01”

“item02”

Name

01L

02L

03L

Structure:E0

Length:4

Name

Structure:C4

Length:12 Structure:E1

Length:4 Structure:C4

Length:4 Structure:C4

Length: 8 Structure:0xC5

Name

34

5 PDU Structure and PDU Encoding

5.1 PDU Structure

Figure 37 shows the structure of a Protocol Data Unit (PDU). A PDU consists of a fixed length ADP
header section and a variable length data section. Table 7 shows the information contained in the ADP
header section.
The relative address of the message and header indicates the data positions when flowing across a net-
work. The bit positions are indicated by 0- to 31-bit in order when flowing into a network. Hereafter in
this document, these representations are used for the message formats and header representations. The
autonomous decentralized protocol uses the big endian for the bite order.

0 15 16 31 Structure of Protocol Data Unit (PDU)

0 +0 H_TYPE

ADP header
 +4 ML

+64 +8 SA Note 1
 +12 DA Note 1
 +16 V_SEQ
 +20 SEQ
 +24 M_CTL Note 2

Data

+28
MTU-28 INQ ID

or
MTU-40 +40 TCD VER

 +44
 +48

G_TID

 +52 MODE PVER PRI
 +56 CBN TBN BSIZ

+60 FU1
 +64

Note 1: Note 2:
SA M_CTL
 0 7 8 15 16 31

 0 1 2 3 4 31
 DMN DFN LNN

 DA (Multicast communication)

 0 7 8 15 16 31

M
L
T

O
N
E

I
N
Q

R
P
L

0 – 0

 DMN DFN MGN

 DA (Peer-to-Peer communication)
 0 7 8 15 16 31

 DMN DFN LNN

(1) MLT
(2) ONE
(3) INQ
(4) RPL

: Multicast flag
: Peer-to-peer flag
: Query flag
: Response flag

(1) DMN
(2) DFN
(3) LNN

(4) MGN

: Domain number (currently fixed to 0)
: Data field number
: Logical node number (used for SA in multicast communications
and DA and SA in peer-to-peer communication)

: Multicast group number (used for DA in multicast communica-
tions)

Figure 37 PDU structure and ADP header

35

Table 7 Information contained in ADP header

No Identifier Size Description

1 H_TYPE 4 Header type. Specify "NUXM" in ASCII to distinguish the message from other
protocol messages (fixed).

2 ML 4 Message length plus 64 bytes.

3 SA 4 Source message address. See NOTE 1 in Figure 37

4 DA 4 Target message address. See NOTE 1 in Figure 37.

5 V_SEQ 4 Message transmission version. This normally specifies the time when the message
transmission number is initialized.

6 SEQ 4 Message transmission number. Valid between 0x00000001 and 0x7FFFFFFF, and
used cyclically.

7 M_CTL 4 Message transmission control information. See NOTE 2 in Figure 37.

8 INQ_ID 12 Query response identifier (Fixed to 0 for future uses)

9 TCD 2 Transaction code

10 VER 2 Program version for updating the program (Fixed to 0 for future uses)

11 GTID 8 Transaction identifier (Fixed to 0 for future uses)

12 MODE 2 Message mode (0 = Online mode, 1 = Test mode)

13 PVER 1 Protocol version (Fixed to 1)

14 PRI 1 Message priority level (1 is assigned to the top priority between 1 and 7. Fixed to
0, if no priority control is implemented.)

15 CBN 1 Current fragmented PDU number (more than 1)

16 TBN 1 Total number of fragmented PDUs (more than 1)

17 BSIZE 2 PDU size (including header size)

18 FUI 4 Fixed to 0 for future uses

36

5.2 Class Base-1 PDU (for Multicast Communication)

Figure 38 shows the format of the Multicast Communication PDU and setting values for its ADP header.
The data section contains communication data.

Figure 38 Format and ADP header setting values of Multicast Communication PDU

H_TYPE = Fixed to ASCII character "NUXM"
ML = Message size + 64
SA = (DMN = 0, DFN = DFN of current node, LNN = Current

node number)
DA = (DMN = 0, DFN = DFN of target, MGC = Target MGN)
V_SEQ = Specify the message transmission version (See *NOTE).
SEQ = Specify the message transmission number (See *NOTE).
M_CTL = Fixed to 0x80000000.
TCD = Transaction code
MODE = Message mode (Either 0 = Online or 1 = Test)
PVER = Fixed to 1.
PRI = Priority level for message. Fixed to 0, if no priority control

is implemented.
CBN = Current PDU number (fixed to 1)
TBN = Total number of PDUs (fixed to 1)
BSIZE = Number of bytes for PDU (the same value as the above ML)
Any other item is fixed to 0.

*NOTE: For a data field of one LAN configuration, transmission with
fixed V_SEQ = 0 and SEQ = 1 is available, however, the
receiving node cannot detect if there is a missing message from
the multicast transmission node.

0

+64

MTU-28

ADP header

Data

Format of Multicast Communication PDU

37

5.3 Class Base-2 PDU (for Alive Signals)

Figure 39 shows the format of the alive Signal PDU. The PDU's header section consists of the
fixed-length alive signal header and variable-length fault information section. The alive signal header con-
tains alive signal information.
Figure 39 also shows the setting values for the alive signal PDU and the structure of the alive signal
header.
Table 8 shows the alive signal header information.

Figure 39 Alive signal message format and alive signal header

Alive signal
header

Fault
information

0

+64

+128

MTU-28 +64

+76

+84

+104

+128

+88

+92

+96

+100

+108
+112

+116

0 31 15 16

al_nd_name

al_os_name

reserved reserved

al_mode al_msgserno

reserved

al_chg_time

al_ipaddr[2]

al_protocol

reserved

fu2
al_ver

fu1

ADP header

Format of Alive Signal PDU
H_TYPE = Fixed to "NUXM."
ML = Message size + 64
SA =(DMN = 0, DFN = DFN of current node, LNN = Current

node number)
DA =(DMN = 0, DFN = DFN of target, MGC = Target MGN)
V_SEQ =Specify the message number (See NOTE).
SEQ =Specify the message transmission number (See NOTE).
M_CTL =Fixed to 0x80000000.
TCD =Fixed to 60003.
MODE =Mode for transmitting device
PVER, PRI, CBN, TBN=All fixed to 1.
BSIZE =The same value as the above ML.
Any other item is fixed to 0.
*NOTE: For a data field of one LAN configuration, transmission

with fixed V_SEQ = 0 and SEQ = 1 is available.

al_tm_out

38

Table 8 Alive signal header

No. Identification Size Description

1 al_nd_name 10 Node name (An ASCII string, up to nine characters ended with NULL)

2 al_os_name 10 Name of vender device (An ASCII string, up to nine characters ended with NULL).
The following is the recommended naming format:

"BN_MN"
where BN: A code of vender name

MN: A device name defined by a vender or an operating system name
(up to s ix characters).

For the vendor codes list, see Appendix B.

3 al_tm_out 4 The timeout delay for alive signals. This interval (in seconds) starts when the last
alive signal is sent by a node and ends when the node is determined to be dead.

4 al_msgserno 2 The message number for a alive report. This parameter is only available for the
duplex LAN control. Valid between 0x00000001 and 0x7FFFFFFF, and used cyclically.
For a device not supporting the duplex LAN control, specify 0.

5 al_mode 1 Alive report mode. For the autonomous decentralized protocol in the specifications,
alive signal transmission with "1" is mandatory.
1: Normal (Raw state)

Normally this value is output.
2. Shutdown notice

The notice is transmitted in this mode immediately before terminating the trans-
mission of alive signals, to inform other devices that the coming alive signal
shutdown will be caused by stopping a device. Transmitting in this mode is op-
tional.

3. Maintenance notice
The notice is transmitted in this mode immediately before terminating the trans-
mission of alive signals, to inform other devices that the coming alive signal
shutdown will be caused by a device maintenance. Transmitting in this mode is
optional.

6 al_protocol 1 The type of the data section use following the alive signal header. In the autono-
mous decentralized protocol in these specifications, "4" is used.

1 to 3: Reserved (for other existing protocols).
4: Autonomous decentralized protocol in the specifications
5 and later: Reserved (for future uses)

7 fu1 1 Fixed to 0 for future uses.

8 al_chg_time 4 The time when a node status changed. It is recommended to set the time in S:M:H,
D-M-Y of GMT (as the elapsed time since 0:0:0, 1970). If setting in GMT is unavail-
able, specify 0. A node status change is assumed as follows, and the values are
used to indicate their associated node statuses:
(1) al_mode = 1 starts to transmit an alive signal (indicating when the status shifts

from the stop to alive statuses).
(2) al_mode = 2 transmits an alive signal (indicating when a shutdown (device stop)

request is received).
(3) al_mode = 3 transmits an alive signal (indicating when a shutdown request for a

maintenance is received).

9 al_ipaddr[0]
al_ipaddr[1]

4 Specify the IP address of a LAN for al_ipaddr[0]. Specify 0 for al_ipaddr[1].

10 al_ver 1 Message version for alive reports (currently fixed to 1).

11 fu2 15 Fixed to 0 for future uses.

12 reserved 7 Specify 0.

39

5.4 Class Opt-2-a (fault information)

The fault information section of the Alive Signal PDU contains fault information (see section 5.3).
Figure 40 shows the structure of the fault information section and Table 9 shows the contents of the fault
information.

Alive signal message <Fault information format>

0 0 15 16 31

ADP header

0 al_cnt_mod_alive
+64

+4

Alive signal
header

(al_protocol=4)
+128 (*2)

al_mod_alive[L]
(*1)

 + DISP1 al_cnt_err_list

(*1) L= [(al_cnt_mod_alive +31)/32] *4
(*2) DISP1=4+L
(*3) M= al_cnt_err_list
(*4) N= al_cnt_option
(*5) DISP2= DISP1+12+M *4

 + DISP1+4

al_err_name
al_err_list structure

 + DISP1+12 0 al_mod_n
o

Fault
information

 +2 al_err_no
MTU-28 (*5)

al_err_list[M](*3)

+4

 + DISP2 al_cnt_option

 + DISP2+2

MTU-28-128

al_option[N](*4)

Figure 40 Format of fault information

40

Table 9 Contents of fault information

No dentification Size Description

1 al_cnt_mod_alive 4 Number of alive report modules (*4)

2 al_mod_alive[L] L

(*1)

Alive information on modules (*4)
(1) If the module number (*5) X (starting from 1) is "alive," the posi-

tion at X-1-[(X-1)/8]*8 bit of al_mod_alive [(X-1)/8] is cleared to 0.
(2) If the module number (*5) X (starting from 1) is "dead," the posi-

tion at X-1-[(X-1)/8]*8 bit of al_mod_alive [(X-1)/8] is set to 1.
Module number 8 Module number 1

al_mod_alive[0] Module number 9
al_mod_alive[1]

al_mod_alive[L-1]

3 al_cnt_err_list 4 The number of reported errors. Up to [(MTU-28-128-4-4-8)/4]. (*2)

4 al_err_name 8 An error name for each error numbering scheme. The name is used by a
monitoring tool as a prefix to identify an error message file name when it
retrieves an error message associated to an error number.

5 al_err_list[M] M*4
(*2) An error information list

6 al_mod_no 2 A module number (*5) (starting from 1)

7 al_err_no 2 An error number. A unique number identified and embodied by
al_err_name

8 al_cnt_option 4 The number of optional information bytes

9 al_option[N] N
(*3) Optional information (Freely available area without a defined format)

(*1) L=[(al_cnt_mod_alive+31) /32] *4
(*2) M=al_cnt_err_list
(*3) N=al_cnt_option
(*4) Module: A unit for which you want to identify the status or locate a fault occurrence, rep-

resenting hardware including a board or an application.
(*5) Module number: A number identifying a module.

41

5.5 Class Opt-1 PDU (for Peer-to-Peer Communication)

Figure 41 shows the format of the peer-to-peer communication PDU and setting values for its ADP
header.
The data section contains communication data.

Figure 41 Format and ADP header setting values of Peer-to-Peer Communication PDU

H_TYPE =Fixed to ASCII character "NUXM"
ML =Message size plus 64 bytes
SA =(DMN = 0, DFN = DFN of current node, LNN = current node

number)
DA =(DMN = 0, DFN = DFN of target, MGC = target MGN)
V_SEQ =Specify the message number.
SEQ =Specify the message transmission number.
M_CTL =Fixed to 0x40000000.
TCD =Transaction code
MODE =Message mode (Either 0 for Online or 1 for Test)
PVER =Fixed to 1.
PRI =Fixed to 1 for real time data, and 0 or others.
CBN =Current PDU number
TBN =Total number of PDUs
BSIZE =Number of bytes for PDU (including ADP headers)
For others, fixed to 0.

0

+64

MTU-40

ADP header

Data

Format of Peer-to-Peer Communication PDU

42

6 Conformance

This section describes conditions required by the specifications on the autonomous decentralized protocol.

6.1 Requirements for conformance

Any devices providing the autonomous decentralized protocol shall implement the communication features
satisfying the requirements shown in Table 10 and each communication feature shall implement the func-
tionality/item noted as "Mandatory." Any functionality/item marked as "Optional" may be omitted or im-
plemented in combination as necessary, however, shall be pointed out explicitly if it is implemented.

Table 10 Requirements for conformance against communication feature

Requirements for conformance Feature Class Clause
Transmission Reception

Multicast communication Base-1 4.1 Mandatory Mandatory

Alive signal Base-2 4.2 Mandatory Optional

Fault information Opt-2a 4.3 Optional Optional

Peer-to-peer communication Opt-3 4.4 Optional Optional

Table 11 Requirements for conformance against communication-type-specific basic items

Requirements for conformance
Multicast Peer-to-peer Alive signal

Item Clause Trans-
mission Reception Trans-

mission Reception Trans-
mission Reception

Test support 4.5
Manda-
tory

Manda-
tory

Manda-
tory

Manda-
tory

Manda-
tory

Not
regulated

Message priority control 4.6
Manda-
tory

Manda-
tory

Manda-
tory

Optional
Manda-
tory
Fixed to 1

Optional

Message numbering man-
agement 4.7 Optional Optional

Manda-
tory

Manda-
tory

Optional Optional

Fragmenting and assembling
messages 4.8 Not regulated Optional Not regulated

Maximum message length Mandatory
(MTU - 92) bytes

Mandatory
16 KB

Mandatory
(MTU - 92) bytes

Associable arrangement 4.9 Optional Optional Not regulated

43

Appendix A (Informative) TCD for System

Table 12 System transactions list

TCD Name Description

60000
|

60002
Reserved Reserved by a special monitoring/control program not complying with the

specifications in this document.

60003 Alive signal
transaction

TCD transmitted as an alive signal by nodes under data fields and used by other
nodes for monitoring.

60004
|

60007
Reserved Reserved by a special monitoring/control program not complying with the

specifications in this document

60008
|

60015
Reserved Reserved for future uses

60016
|

60059
Reserved Reserved by a special monitoring/control program not complying with the

specifications in this document

60060
|

65399
Reserved Reserved for future uses.

65400
|

65534
Reserved Reserved for the communication within a controller not complying with the

specifications in this document

44

Appendix B Vendor Code List

A vendor code (BN) identifies a vendor and is contained in al_os_name under the alive signal header.

Table 13 Vendor name and code (informative)

BN Vendor names
AB Allen Bradly Japan Co., Ltd.

ABB ABB Industry.

DS Daido Signal Co., Ltd.

HI Hitachi, Ltd.

KS Kyosan Electric Manufacturing Co., Ltd.

ME Mitsubishi Electric Corporation

NS The Nihon Signal Co., Ltd.

OM

OMR
OMRON Corporation

SE Seiko Electric Mfg. Co., Ltd.

SS Seiko Precision Co., Ltd.

TD Toyo Denki Seizo K.K.

TK Tokyo Kikai Seisakusho, Ltd.

TO Toshiba Corporation

YE Yokogawa Electric Corporation

The Vendor Codes are managed by Manufacturing Science & Technology Center (MSTC). To get a new
vendor code, file an application for it to MSTC.

45

Appendix C (informative) Notes on Implementation

C.1 Message length

The maximum message lengths for multicast communication and peer-to-peer communication are re-
stricted to 1,408 bytes and 16 KB in these specifications, respectively.

NOTE:
The maximum message length for multicast communication may be restricted by the maximum number of
the UDP broadcast transmitting/receiving bytes (MTU) for a device.
Maximum message length for multicast communication = MTU - IP/UDP header (28) - ADP header (64)

= 1,408 bytes

Some devices may provide less values than MTU for the maximum number of transfer bytes due to their
managing way of build-in buffer, even if MTU for Ethernet is 1,500. When using such devices, the maxi-
mum user message length that can be handled with the device shall be clearly demonstrated on the at-
tached operating manuals or guides. For any device that cannot accommodate more than one buffer with
the size of 1,408 bytes or more, it is recommended to provide choices for users: 256-, 512- and
1,024-byte buffer size. In this case, also the maximum user message length that can be handled with the
device shall be clearly demonstrated on the attached operating manuals or guides.

C.2 TCP connection management

C.2.1 Supplementary control information for connection

If the TCP feature of a node that perform communication has the functionality, it shall be configured.

(1) KEEPALIVE feature
If a node has the KEEPALIVE feature to monitor the state of the target node to prepare for sudden shut-
down of the target node due to a crash, the feature shall be enabled previously.
A transmitting node can detect such a fault using a transmitting timeout, while a node only waiting for
reception (during a certain period with no transmission) cannot detect the fault. Activating the feature
allows such a reception only node to detect an abnormal shutdown of the target node.

(2) Adjusting TCP window size
The TCP window sizes (transmitting/receiving buffer size by connection) of two nodes shall be the same
before a TCP connection can be established between the them. If the window sizes between nodes over a
TCP connection are different, the communication performance is degraded significantly, so the TCP
window size adjusting feature shall be available between nodes. If the target node has a fixed window size,
the source node shall adjust its window size to that of the target before connection.
Devices shall clearly describe how many the default window sizes are and the way of adjusting their
window sizes in their documentation.

C.2.2 Fault detection for peer-to-peer communication path

Devices shall have features that can detect faulty conditions during peer-to-peer communication, such as a
shutdown or fault on the target node, or disconnected TCP due to a LAN fault. If a TCP connection is
disengaged, the TCP ports shall be closed and halted indicating a peer-to-peer communication path fault.

46

For the methods of detecting such a fault, detecting from a LAN communication adapter, TCP transmit-
ting timeout or KEEPALIVE timeout shall be available. An error messaging or error logging feature shall be
also available to notify a maintaining person for a fault occurrence.

C.2.3 Other notes

- When a TCP connection is established, the connected nodes shall notify to each other the maximum TCP
segment sizes they can handle, and the smaller size is used for the following data transfer. The maximum
TCP segment size may vary depending on devices. For example, the TCP transmission/reception unit size
between device 1 with 1,350 bytes and device 2 with 1,024 may be 1,024 bytes. A TCP segment contains
a message or a packet including an ADP header. The smaller TCP segment size, the poorer the transfer
efficiency becomes. The maximum TCP segment shall be clearly demonstrated for any devices.

- The availability of the TCP window size adjustment and the range of size adjustment shall be clearly
demonstrated in documentation for any devices.

- A device shall contain its MAC address and IP address during activation, issue an ARP request packet
and initialize the ARP tables of other devices (for synchronization to changed MAC address).

C.3 Message priority control

The specifications regulate that the message priority control shall be implemented. When implementing the
feature, the following shall be comprised with to prevent any protocol fault with other devices that can
occur when a device is connected to a data field running a priority control:

1) If the lowest transmitting priority level for a device can cause a problem, users shall be able to config-

ure the priority level for messages transmitted by the device.

2) If a user system guarantees that transmitting with priority level 1 is available, transmitting may be fixed

to priority level 1.

The priority control is recommended to be implemented based on the above rules (especially item 1) from
the viewpoint of the ease of operations). It is recommended to implement transmitting with priority level 0
for default transmission. Of course, the priority level selected by user shall be used if a user define it.

47

C.4 TCD Access Control

This feature shall be provided to prevent an application from sending or receiving an invalid message by
controlling accessing the transmitted or received message from an application. The access control shall be
performed by checking TCD. When building the system, a TCD number that is referred to for transmit-
ting/receiving privileges shall be defined for each application. If an application without a required privilege
request for a transmission or reception to/from a TCD number, the request shall be rejected as an illegal
access.

Figure 42 TCD access control

C.5 Logging statistic information for state change in node

A device with the implemented autonomous decentralized protocol shall log statistic information or trace
events on state changes including a communication adapter failure or transmitting/receiving buffer over-
flow during transmission or reception. For a device without the above feature, shall support the commu-
nication feature for fault information described in section 4.3, "Class Opt-2-a Feature (for Fault Informa-
tion Transmission)."

The following are possible state change events within a node:

- Fault of hardware such as a communication adapter
- Activity ration or overflow of a communication buffer
- Fault detection of TCP/IP or UDP/IP protocol

Transmission
request

AP1 AP2

Definition of configuration

AP1 shall allow transmitting to TCDi
AP2 shall reject transmitting to TCDi

Node 1

Data field

Illegal
access Permission

ADP

Message
with TCD = i

48

C.6 Extensibility

Nodes or multicast groups shall able to be added or deleted online to/from a system running on a platform
with the implemented autonomous decentralized protocol without interrupting any existing online operation
so that the system can easily expanded in stages.

A device shall be designed to have a capability that allows the device to be added or deleted without
interrupting the online system.

Figure 43 System extensibility

Additionally installing a device

Adding a multicast group

Adding an
application

MGN1 MGN2

MGN3

49

Appendix D (informative) Procedure

The appendix describes sample implementations based on a socket concept used in Windows or UNIX and
uses the following API names:

D.1 Transmitting/Receiving multicast communication

D.1.1 Transmitting

The section describes the procedure for transmitting multicast messages using a device with a socket.
(a) Create the ADP header sent to the destination.
(b) Add an ADP header to the message, creating PDU.
NOTE:
The specifications do not use message fragmentation, since the message size for the multicast communi-
cation is smaller than MTU-92.
(c) Transmit PDU created in step (b) to the socket for the multicast transmitting port of the target data
field by executing "sendto." Specify parameters for "sendto," the broadcast IP address of the target data
field and the target UDP port number associated with the target multicast group number.

Figure 44 Multicast message transmission

D.1.2 Receiving

The section describes the procedure for receiving multicast messages using a device with a socket.
(a) Read PDU from a socket for receiving multicast group MGNi.
(b) Retrieve the ADP header from the received PDU and check the header validity. At this time, it is
required to check the range of valid values in the header to avoid receiving a faulty header from another
device that can cause a device fault.
(c) Pass a message (data section in PDU) to an application based on TCD in the ADP header.

 Message

Transmission request from an application (target: DFN, MGN)

Message

ADP header

Transmission through "sendto"

Target IP address: Broadcast address
Target port number: UDP port number of target MGN

Transmitting socket

50

Figure 45 Outline of multicast transmission and reception

D.2 Peer-to-peer transmission and reception

D.2.1 Transmitting

This section describes the procedure of the peer-to-peer communication.
(a) For a message smaller than (MTU - 104) bytes and that can be sent to LAN as it is, go to step (C). If

the message size larger than the limit, divide the message to several packet forms and transmit them
following the instruction in step (c). For fragmenting messages, see section D.4, "Dividing and As-
sembling Messages."

(b) Add an ADP header to a message (or fragmented message packet), creating PDU.
(c) Transmit PDU to the connection of the target node. If the window of the target node is closed and

transmission is unavailable, wait until the window opens. The configuration must allow reception even
when transmission is not allowed, or if there are some preceding packets having requested for trans-
mission, a new PDU must wait (blocked) until all the packets have been transmitted.

NOTE:1
It is recommended before transmitting to TCP, the multicast transmitting socket is made unblocked and
transmitting packets is checked if it is available. In this scheme, "write" returns EWOULDBLOCK if
transmission using a socket is unavailable. Returning EWOULDBLOCK indicates that other operations
are on the way and the target TCP requires the transmission request to wait until the TCP socket is set to
"select" and becomes available for transmission. Transmission starts when "select" notifies of transmission
availability.
Since TCP transfers data over byte streams, there may be cases where not all the bytes but only several of
them are sent responding to an issued PDU transmission request. To avoid data duplication, only the data
that have not been sent shall be sent on the second transmission.

NOTE:2
Since the TCP communication shall perform full-duplex communication over one connection, no such an
implementation where if either of transmission or reception is made waited and the other is unavailable for
processing is allowed.

AP AP AP

MGN=2
port#=50002

UDP/IP

UDP discarded

Multicast to
MGC = 2 ADP

ADP

UDP/IP

AP

Target port
number= 50002

UDP header

Target
MGN = 2

Message

51

D.2.2 Receiving

This section describes the procedure of receiving on the peer-to-peer communication.
(a) Reads 64 bytes as the ADP header from the connection of the target node.
Since data communication with TCP is performed over byte steams and it is impossible to clearly know
the boundaries of PDUs, users must manage to locate PDU boundaries.
Figures 46 and 47 show the reception procedure. In the former, one PDU is received with one TCP
packet, but in the latter received one PDU spans more than one TCP packet.
(b) Retrieves the ADP header from the received PDU to check the header information.
(c) If TBN and CBN of the received ADP header are not equal, that is, the message has been divided into
more than one PDUs, steps (a) and (b) are repeated and PDUs are retrieved by the number of fragments
to assemble to the original message. For assembling a message, see section D.4, "Dividing and Assembling
Messages." If TBN is equal to CBN, it is assumed that the message reception has been completed, so go to
step (d).
(d) Pass the message to an application based on TCD in the ADP header.

Figure 46 Receiving procedure where one PDU is received with one TCP packet

Figure 47 Receiving procedure where one received PDU spans more than one TCP packet

 (1) Recept ion of ADP header (in 64 bytes) Connect ion

BSIZE
ADP
header

Data

(2) Retr ieves the size of the
PDU data sect ion
(BSIZE - 64) from BSIZE
of the ADP header.

(3) Reads with the PDU data size.

Data

 (1) Reception of ADP header (in 64 bytes) Connection
Header

1

Header 1 Header 2

Less than 64 bytes was received.

(2) Receive as 64 - (the size of header 1) bytes

BSIZE
Repeats step (2)
until the entire ADP
header is
successfully read.

(4) Reads in the data size (BSIZE - 64: previously
read size).

Repeats step (4) until all the data is
successfully read.

ADP
header Data

(3) Reads in the data size as (BSIZE - 64).

Header
2

Header
1

Header
2

Users must manage and record
how far one data section has
been received, and where the
reception must be resumed
when anew reception event
occurs.

52

D.3 Transmission number and version number management

D.3.1 For multicast communication

D.3.1.1 Management at transmitting node

Assignment:
- For transmission version management, a version number (V_SEQ) shall be assigned to each node.
- The transmission numbers (S_SEQ) are managed by MGN and by the message priority level (i.e., if

there is one level, only one number is assigned).
- The version numbers are assigned with time stamps.

Initialization:
On the system startup and resetting the above transmission, the time of initialization shall be set to the
version number V_SEQ and S_SEQ shall be set to 1.

Transmission:
When transmitting a message, V_SEQ and S_SEQ are updated to V_SEQ (version number) and S_SEQ
(transmission number) in the ADP header, respectively. S_SEQ will be updated as follows:

- If S_SEQ is not 0x7FFFFFFF, S_SEQ is incremented by one.

- If S_SEQ is 0x7FFFFFFF, S_SEQ is reset to 1 without increment.

NOTE:
If V_SEQ and S_SEQ are set to 0 and 1 respectively, no receiver checks the number.

Figure 48 Transmission number management multicast transmitting node

DFN=1

DFN=2

V_SEQ

S_SEQ

Node common information

1
2
3
4

MGN=

1
2
3

Data field
management table

MCG management table

LNN=1
DFN1

MGN2

LNN1 node

LNN=2 LNN=3 LNN=4

Transmission
to MGN2

53

D.3.1.2 Management at receiving node

Requirements:
- Every data field and message priority level shall have a multicast reception number managing table

(MCSEQ).
- When receiving a multicast message, the above MCSEQ shall be retrieved through a data field managing

table based on DFN and the priority level specified for the source node.
- MCSEQs are arranged as a matrix for each MGN and LNN. For each element of the matrix, the last

reception number (R_SEQ) and the last reception version number (R_V_SEQ) are set.
- Individual message source LNN and MGC contain the last reception numbers (R_SEQ) and the last

reception version numbers (R_V_SEQ).

Initialization:
For unconditional first message reception after system startup, R_V_SEQ and R_SEQ shall be initialized to
"0."

Reception:
When receiving a message, LNN, SEQ (transmission number) and V_SEQ (version number) of the
source node shall be read from SA in the ADP header. Requested MCSEQ will be retrieved through the
above LNN and received port number. R_V_SEQ and R_SEQ are retrieved from the table for the number-
ing check described on the next page.

NOTE:
Any message with V_SEQ = 0 and SEQ = 1 is passed to an application without checking the transmission
number.

Figure 49 Multicast reception number management

LNN=

1 2 3 4

MGN=
1
2
3
4

MCSEQ

R_SEQ

R_V_SEQ

LNN=
1 2

MGN=

1
2
3
4

MCSEQ

DFN=1

DFN=2

Data field
managing table

3

LNN=1

LNN=2 LNN=3

LNN=3 LNN=2

LNN=4

LNN=4

DFN1

DFN2

MGN2

LNN1 node

54

D.3.1.3 Transmission number check for multicast reception

1) If R_V_SEQ is equal to 0,
The message is unconditionally received and V_SEQ and SEQ are written into the reception number
managing table (MCSEQ).

2) If R_V_SEQ is not 0 and V_SEQ is equal to R_V_SEQ,
R_SEQ and SEQ are compared for detecting and deleting a duplicated message if it is found.

3) If R_V_SEQ is not 0 and V_SEQ is not equal to R_V_SEQ,
Resetting the transmission number at the transmitting node is assumed, and the R_V_SEQ and R_SEQ
values are updated to the V_SEQ and SEQ values.

Table 14 Detailed conditions for number check

No. Conditions Determined result

1 R_SEQ!=0x7fffffff && R_SEQ+1=SEQ

2 R_SEQ=0x7fffffff && SEQ= 1
Normal message reception

3 R_SEQ>N1 && R_SEQ-N1<SEQ<=R_SEQ

4
R_SEQ<=N1 && *

(0<SEQ<=R_SEQ ||
 0x7fffffff-(N1-R_SEQ)<SEQ<=0x7fffffff)

Duplicated message reception

5 Other conditions Missing message

N1: Transmission number assumed to be duplicated.

*: For judgement of No. 4, alternatively 0x80000000 can be added to both R_SEQ and SEQ (to be
XR_SEQ and XSEQ, respectively) and converted into the following condition.
XR_SEQ-N1<= XSEQ<= XR_SEQ

Figure 50 Valid reception number

R_SEQ+1(Expected valid
number)

R_SEQ (The last reception
number)

R_SEQ-N1

Received &TR_TMERR
generating process (missing
message report)

Discard (duplicated message)
0

N1: Transmission number assumed to be duplicated

55

D.3.2 For peer-to-peer communication

D.3.2.1 Management at transmitting node

Assignment:
- For transmission version management, a version number (V_SEQ) shall be assigned to each node.
- The transmission numbers (S_SEQ) are managed by connection for each node.
- The time for the version number shall be set in seconds.

Initialization:
On the system startup and resetting the above transmission, the time of initialization shall be set to the
version number V_SEQ, and S_SEQ shall be set to 1.

Transmission:
When transmitting a message, V_SEQ and S_SEQ are updated to V_SEQ (version number) and S_SEQ
(transmission number) in the ADP header, respectively. S_SEQ will be updated as follows:

- If S_SEQ is not 0x7FFFFFFF, S_SEQ is incremented by one.

- If S_SEQ is 0x7FFFFFFF, S_SEQ is reset to 1 without increment.

Figure 51 Transmission number management at peer-to-peer transmitting node

V_SEQ

S_SEQ

1
2
3
4

LNN=

Node common information

Data field
management table

Node management table

1
2
3

56

D.3.2.2 Management at receiving node

Requirements:
- Every data field shall have a peer-to-peer connection transmission number managing table (PTPSEQ).
- When receiving a peer-to-peer message, the above PTPSEQ shall be retrieved through a data field

managing table based on DFN and the priority level specified for the source node.
- PTPSEQs are arranged as a matrix for each LNN. For each element of the matrix, the last reception

number (R_SEQ) and the last reception version number (R_V_SEQ) are set.
- Every message source LNN contains the last reception number (R_SEQ) and the last reception version

number (R_V_SEQ).

Initialization:
For unconditional first message reception after activation, R_V_SEQ and R_SEQ shall be initialized to "0."

Reception:
When receiving a message, LNN, SEQ (transmission number) and V_SEQ (version number) of the
source node shall be read from SA in the ADP header. Requested PTPSEQ shall be retrieved through the
above LNN and received port number. R_V_SEQ and R_SEQ shall be retrieved from the table to be
processed as described in section D.3.1.3, "Transmission number check for multicast reception."

Figure 52 Transmission number and version number management for peer-to-peer receiv-

ing node

LNN=

1
2
3
4

PTPSEQ
R_SEQ
R_V_SEQ

1
2
3
4

DFN=1

DFN=2

Data field
managing table

PTPSEQ

LNN=

57

D.4 Dividing and assembling messages

D.4.1 Dividing and assembling messages

The specifications limits the maximum user message size to 16 KB for the peer-to-peer communication,
while, the maximum transfer size (MTU) for LANs is limited to 1,500 bytes under the Ethernet standard.
For the peer-to-peer communication, the IP and TCP headers use 20 bytes respectively and the ADP
header uses 64 bytes, so available free data storage size can be calculated as (MTU - 104) bytes.

NOTE:
The maximum free user's area in the TCP segment may be less than 1,460 bytes through a negotiation on
the TCP segment size when establishing a TCP connection.

If a message size is more than (MTU - 104) bytes, the message shall be divided into multiple PDUs with
added ADP headers respectively. The PDUs are sent to the data field in order. The message receiving side
receives the PDUs and assembles them into one original message.

Figure 53 shows message fragmenting and assembling processes.

Figure 53 Message fragmenting and reassembling

:ADP header and CBN, TBN,
BISZE settings

reassembling

Data field

Transmission request

AP

TCP

Message

: Fragmented message copy

dividing

TCP

AP
Message

Reception : Assembly referring to the
same SEQ, TBN and CBN.

<Legends>

Node 1

Node 2

ADP

PDU

PDU

ADP

Messages are divided
by (MTU -104) bytes.

58

D.4.2 Header information for fragmentation and assembly

The section describes the header information used for fragmenting and assembling messages. Figure 54
shows the setting examples for the information based on the information on message fragmentation in
Figure 53.

CBN: Current fragmented PDU number (1 is assigned to the first PDU number)

TBN: Total number of fragmented PDUs

BSIZE: PDU size

ML: Message size plus 64 (bytes)

SEQ: Message transmission number

Example of
fragmentation

Fragmented into four packets
Without

fragmentation

SEQ 100 100 100 100 101

CBN/TBN 1/4 2/4 3/4 4/4 1/1

BSIZE 1396 1396 1396 568 1024

ML 4564 4564 4564 4564 1024

Packet

Figure 54 Sample header information for message fragmentation

59

D.4.3 Message fragmentation algorithm

The following is the message fragmentation algorithm:

UML = User message length
if (UML > 16384)
Error handling End
UBS = MTU-104
TBN= (UML+UBS-1) / UBS
if (UBS < UML) {

for (CBN=1, CBN<=TBN,CBN++) {
if (CBN=TBN)

HD.BSIZE=UML-UBS*(CBN-1)+64
else

HD.BSIZE<-UBS+64
HD.ML=UML+64
HD.CBN=CBN, HD.TBN=TBN

}
}
else{

HD.ML=UML+64, HD.BSIZE=UML+64
HD.CBN=1, HD.TBN=1

}

Figure 55 Fragmentation of message to packets

MAC
header Data

MTU

20 20 64

BSIZE
UBS

dividing
SEQ= i

UML

UBS UBS UBS

CBN=1

CBN=2

CBN=3

CBN=4

ML

UBS

TBN=4

<Legends>
ML : Message length plus 64 bytes
UML : User message length (in bytes)
UBS : User block size (in bytes)
BSIZE : Block size (in bytes)
H : ADP header (in bytes)

SEQ= i H H H H

64 bytes

IP
header

TCP
header

ADP
header

60

D.4.4 Message assembling algorithm

Before a message can be assembled, the following resources required by the assembling algorithm must be
secured and maintained:

Required resources:
- Message receiving buffer

It maintains already received fragmented PDUs until all the remaining fragmented PDUs for a message
have been received.

- Fragmented block bitmap (used to check order)
It is used to check which fragmented packet has been received for a message.

- Monitoring timer
The timer monitors the timeout period for each fragmented PDU after reception to avoid keeping the
existing fragmented PDUs infinitely after starting to assemble a message and causing buffer space short-
age. When the timeout period is reached, the message on the way of assembling shall be discarded. The
timeout period shall be 15 sec. in default and adjustable.

The following shows an algorithm where messages are reassembled:

61

Buffer identifier <- Received packet's DFN, TCD, source node number, V_SEQ
If (There is a message being assembled and having the same identifier as the received packet buffer identifier

&& It is older (lower) than the received PDU's SEQ.)
{

Discarding the message on the way of assembling.
}
else {/** else1 **/

if (CBN==1 && CBN==TBN) /* Processing received PDU, hereafter.*/
{ Receiving a complete (not fragmented) message }
else { /** else2 **/

if (Whether it is a new fragmented message?)
{

Queuing list (buffer) waiting for message reassembling is reserved. A bitmap and
the receiving buffer are reserved for a received fragmented PDU for saving data.
The monitoring timer starts.

}
else{

The monitoring timer is reset.
The message assembling queuing list is retrieved referring to the associated
buffer identifier. A bitmap and the receiving buffer are reserved for a received
fragmented PDU for saving data.
if (CBN==TBN && Have all blocks been received?)
{

The data section in the list is made available for copying to the user reception area
End

}
else{The monitoring timer restarts, waiting for the next fragment}

}
} /** else2 **/

} /** else1 **/

Figure 56 Normal message assembling

ADP
header Data

ADP header Data

ADP header Data

ADP header Data

1/4

2/4

3/4

Fragmented PDU bitmap

1 2 3 4

CBN=4

R: Received
N: Not received

R

SEQ=i Message-on-the-way-of-assembling list

(1) The moni-
toring timer
starts with
CBN = 3 and
ends with
CBN = 4.

Message (SEQ=i)

1 2 3 4

(2)Reception

(3) The timer resets on normal reception

1 2 3 4

(4) Assembling com-
pletion message
(SEQ=i)

R R N

Waiting for CBN = 4 condition

62

If one of the following conditions is met a message is discarded:
- The monitoring timeout period has been elapsed.
- The message with the next transmission number has been reached from the same source node.

The timing of discarding the existing message may be varied depending on the implementation, that is,
the existing message may be discarded as soon as the next message reaches or when the timeout period
has been elapsed.

Discarding procedure:
(a) Release the buffer of the message assembling list for which the timeout period has been elapsed.
(b) Reset the bitmap.
(c) Notify the user that the message has been discarded.
(d) The monitoring timer is reset except for the context where discarding occurs at monitoring timeout.

Figure 57 Timeout during message assembling

1/4

2/4

3/4

Fragmented PDU bitmap
1 2 3 4

CBN=4

R R R N

SEQ=i
Message-on-the-way-of-assembling list

(1) The monitoring
timer starts with
CBN = 3 and
ends with CBN
= 4.

(3) Discarding message

(3') Assembling list discarded

Message (SEQ=i)

1 2 3 4

Not received

(2) Monitoring timeout
occurred

ADP header Data
ADP header Data

ADP header Data

ADP header Data

R: Received
N: Not received

Waiting for CBN = 4 condition

63

Figure 58 shows troubles that can be met during message assembling. The implementation shall include
remedies against these troubles:

Figure 58 Notes on assembling message

1 2 4

Case 1: PDU order reversed on the way.

1 2 3 4

Packet reception order

Case 2: Started with reversed PDU order

1 2 4

If a packet reception starts from PDU2, the
system shall not discard a message immediately
as case 1 is but wait until the timeout period of
the next packet has been elapsed. If a packet is
missed, the message shall be discarded when
timeout is reached or the next message is
received.

1 2 3 4

3

3

1 2 4

Case 3: Detecting missing PDUs on the way

1 2 4 T.O.

Discarding
message

1 2 4

1

SEQ=1 SEQ=2

<Legends>

If PDU4 is received after PDU2, the system shall
not discard a message immediately but wait until
the timeout period of the next packet has been
elapsed, because the packet order reversing
may be allowed on communications among
devices of different types.

Packet reception order

Packet reception order

i

Packet reception order

Shall not be discarded at this time but
discarded when timeout is reached
with SEQ = 1.

When a fault is detected during reassembling a received message,
the message shall not be discarded immediately except for the
receiving buffer shortage but discarded when message assembling
timeout has been elapsed. This timeout period shall be adjustable.

: Fragmented PDU number

: Missing PDU

4 2 1

64

D.5 Node availability monitoring

This section describes monitoring other node status to determine whether it is enabled or disabled based on
an alive signal message, for a data field with one LAN configuration.

1) When starting to monitor a data field, all the nodes belonging to the data field shall be disabled.

2) When an alive signal message is received from a node, the node shall be assumed to be enabled, and
the alive signal timeout period (al_tm_out) shall be recorded.

3) If the alive signal timeout period (al_tm_out) is elapsed for an enabled node without incoming alive
signal messages during the period, the node shall be assumed to be disabled.

4) If the alive report mode (al_mode) for an alive signal message is 2 or 3, the node shall be assumed to
be disabled and the cause shall be determined whether it is due to a shutdown or maintenance work.
Determining the alive report mode (al_mode) shall not be mandatory but may be implemented as nec-
essary.

Example: If the alive signal timeout period (al_tm_out) is 12 sec.,

Figure 59 Alive signal monitoring sequence

Monitoring node Value of status

transition counter

0

12
Counter is set

11
10
9

12
11
10

9
8
7
6

12
11
10

9
8
7
6

5
4
3
2
1

0

Dead

Status of
monitored node

Alive

Detects status shift (Dead
to Alive).

Detects status shift

D
ec

re
m

en
ts

th

e
st

at
us

tr

an
si

tio
n

co
un

te
r

(o
ne

 s
ec

. i
nt

er
va

ls
).

Monitored node

t t
: Alive signal missing. A case where no alive signal has been detected for 12

sec. or more and a node is assumed to be disabled.

Counter is set

Counter is set

Dead
 (Alive to Dead).

65

D.6 Fault information transmission

Before fault information can be sent it must be attached to an alive signal. The following shows how to
create fault information, which shall be created when transmitting an alive signal.

(a) Set the number of modules in al_cnt_mo_alive, for which the enabled/disabled status must be reported.

(b) Divide the number of modules requiring the enabled/disabled status to be reported by eight (the number
of bits for one byte), and secure a storage area (al_mod_alive) equal to the number of bytes round off by
four (to use long word boundaries).

(c) Set a bit to the reserved storage space (al_mod_alive), indicating the enabled/disabled based on the
enabled/disabled status of each module.

(d) Register the set of an error number and module causing the error into the list (al_err_list) referring to
the last fault information transmission (alive signal transmission) and specify the number in al_cnt_err_list.
The fault (error) information shall be transmitted once or more. To secure the transmission, it is recom-
mended to transmit even an error that has occurred only once (intermittent error) as fault (error) informa-
tion by the number of times that is calculated by dividing the alive signal timeout interval (al_tm_out) with
the alive signal transmission intervals. An continuous error shall be transmitted whenever it occurs.

(e) Specify an error name (al_err_name). (This is not associated with the transmission number but a name
only used to uniquely identify the error number.) The error name is used by monitoring tools to identify a
file where error message associated with an error number must be found (see Appendix F.3).

(f) An error code shall consist of two bytes, upper and lower bytes. It is recommended to assign the
upper and lower bytes to the summary and detailed codes respectively, as follows:
Two-byte error code:
Upper byte: Summary code
Lower byte: Detailed code
The summary code shall be classified as follows:
0x01: Error of detecting illegal initial data
0x02: Error of detecting faulty header message reception
0x03 or more: Left at the options of vendors.

(g) If any other information is required to be sent additionally as fault information, specify as optional
information (al_cnt_option, al_option).

NOTE:
If the above data size exceeds the available transmission size (MTU - 28) bytes, decrease either of the
sizes, al_mode_alive, or al_err_list or al_option. For example, you can achieve this, by dividing an error list
into several sub-list for transmission, or eliminating low-priority error from transmission.

66

Appendix E (informative) Sample Implementation

E.1 Byte order problem

The autonomous decentralized protocol uses big endian for PDU's ADP header byte order, however the
data section (message) is not specifically defined. The byte order of the data section may vary depending
on the upper section of ADP (i.e., applications).

Figure 60 Network byte order

 <Motorola type> < Intel type >

Byte swap

Big endian Little endian

Data field

Big endian A B C D
0 1 2 3

D C B A
3 2 1 0

A B C D
0 1 2 3

A B C D
0 1 2 3

67

The following methods are recommended for byte ordering of the data section.

- Transfer in character strings
This transfers the entire data section in ASCII character. The applications are not required to perform byte
swap nor to regard the byte order type.

- Byte swapping by application
In this method, an application on the little endian node swaps the bytes to convert the byte order on the
node with that on the network. Note that for an application with byte order of big endian is on a node or
user data is in character strings, no swapping is required.

(a) For character string user data, no byte swapping is required

(b) For structure user data, byte swapping is required

Figure 61 Byte order and byte swapping

 Big endian
Node

Little endian
Node

Header "abcdefg123"

Data field

AP

ADP

AP

ADP

Character string data

 Big endian
Node

Little endian

Node

Header

Data field

AP

ADP

AP

ADP

0x01234567

Swap

0x67452301

0x01234567

Structure data

68

E.2 Alignment problem

The autonomous decentralized protocol aligns the header structure in the PDU's ADP header based on the
long word alignment to smooth out the alignment discrepancies among different device languages. No
alignment problem arises for headers when implementing protocols.

Note that the alignment in the data section (message) is handled by the upper layer (application) of ADP as
is the case of the byte order. The following are recommended for the data section alignment:

- Transfer in character strings
This method transfers all the data section in ASCII character strings or the like so that the application is
not required to deal with alignment.

- Unifying to the long word alignment by an application
This method defines all the data structures in the long word alignment, allowing using any language align-
ment when developing applications on nodes. This allows communicating with any devices with different
types of alignment, including word, natural or long word alignment.

 Word alignment Natural alignment Long word alignment

 0 7 0 7 0 7

+0 ver +0 ver +0 ver
+1 dummy +1 +1
+2 +2 +2
+3 +3

dummy
+3

dummy

+4 +4 +4
+5

seq

+5 +5
+6 +6 +6
+7

upno
+7

seq

+7

seq

+8 +8 +8
+9 +9

upno
+9

upno

+10

+10 +10

Figure 62 Difference in alignment types

< C language >

struct userhd {
 char ver;
 long seq;
 short upon;
} ;

69

E.3 Alive signal

E.3.1 Conditions

Network address : 128.0
Host address : 128.0.0.1
Data field : 1
Local node number : 2
Local node name : “node2”
Alive-signal transmitting port : 600
Alive-signal transmitting intervals : 10 second

E.3.2 Alive signal message setting values

Target settings

Broadcast address =128.0.255.255

Target port =600

ADP header settings

h_type = "NUXM"

ml = 128

sa = 0x00010002

da = 0x00010001

v_seq = 0

seq = 1

m_ctl = 0x80000000 # Multicast

inq_id = 0

tcd = 60003

ver = 0

gtid = 0

mode = 0

pver = 1

pri = 1

cbn = 1

tbn = 1

bsize = ml setting value (128)

fu1 = 0

Setting alive signal

al_nd_name = "node2"

al_os_name = "HI_PC_win" # Example :PC from vender H (Windows platform)

al_tm_out = 10 * 4

al_msgserno = 0

70

al_mode = 1

al_protocol = 4

al_chg_time = 0 # Devices not supporting G.M.T.

al_ipaddr[0] = LAN IP address

al_ipaddr[1] = 0

al_ver = 1

al_fu1 = 0

al_fu2 = 0

reserved = 0

Alive transmission algorithm

While () {

 Sendto (socketno, alive signal message storage address, size, target sockaddr)

 10 sec. delay

}

Setting alive signal for shutdown and transmission example

 al_mode = 2 # shutdown notice

 for other information refer to the normal.

 Sendto (socketno, alive signal message storage address, size, target , sockaddr)

71

E.4 Creating Fault Information

Within a node, individual fault points (applications or hardware) shall be assigned with module numbers for
identification. Then, a table associating causes of errors that can occur at faulty points with error numbers
shall be defined. This table is used to determine the module number and determine the error number asso-
ciated with the cause or error. ADP implementor shall assign module numbers and associate causes of
errors and error numbers.

Each fault can be assigned with detailed data, such as fault register information, as optional information.

Figure 63 shows an example where each application within node 1 is assigned with a module number. In
this example, a memory space shortage error occurred at module number 3, the error number was located
from the cause of fault, the detailed data on the occurred fault was written into the optional information
and the alive signal was transmitted.

Figure 63 Creating faulty information when a fault occurred

Alive signal

Fault
information

Cause of fault
Memory is short
TCD is illegal
. . . .

1002(Error#)
T

ra
n

sm
is

si
o

n

Optional
information

Optional information specific to devices
(including faulty register information)

D
at

a
fie

ld

Node alive
information

When alive signal is
transmitted, this
information is always
saved

Cause of fault ?

3(Mod#)

Fault information

- Assigning hardware information instead of applications
- Definitions of error cause and number for each device

PDU

AP alive
information

Error#

1002
2438

Mod# Alive/Dead

1 Alive
2 Alive
3 Dead
4 Alive
5 Alive

Mod#4

Mod#3 A fault
occurred !

Mod#2

Mod#1

Mod#5

Alive/Dead status of module
(application) within node

Module alive information

72

Appendix F (informative) Example

F.1 Displaying node status

The node status within a data field can be monitored using alive signals.

Displaying example in UNIX environment:
- The status of the all nodes within any data field can be displayed in characters.
- The status changes on nodes can be reported to an application online.

Displaying example in Windows environment:
- The enabled/disabled status of the all nodes within any data field can be graphically displayed in different
colors.

- The status changes on nodes can be reported to an application online through DDE.

Figure 64 Node enabled/disabled monitoring

Node 4 Node 3 Node 2

Node 1

Node schema

Displaying example in Windows environment

Data field

Node 1
(Online)

Node 2
(Test)

Node 3
(Shutdown)

Controller WS
PC

Alive signal

<Legends>

Data field

PC

ADS Datafield information
df= 1 type=CD105 node= 2
system type=separation
node mode=test(OO,OI,--,--)
LAN1 addr =160.170.0.4
LAN2 addr =

> Node status <
node name status LAN1 osname
 1 node1 alive alive S10
 2 node2 alive alive hi-ux
 3 node3 shutdown dead Windows3.1
 4 node4 alive alive Windows3.1

Displaying example in UNIX environment

: Alive node

: Dead node

: Tested node

Node 4
(Online)

Alive signal Alive signal

Collects alive signals and displays
node status

73

F.2 Displaying fault information

Monitoring applications on nodes designated for fault information monitoring can monitor the fault infor-
mation attached to alive signals. Using the fault information, you can

- Graphically display module structures.
- Display module enabled/disabled status in colors.
- List the occurred errors within the node.
- Log and display the occurred errors within the node.
- Display optional information specific to devices (binary display).

The following diagram shows an example of displaying fault information. In this displaying example,
memory shortage occurred in the application, module 3 on node 1, and the status of the application shifted
to disabled.

Figure 65 Display example of fault information

Module structure (node 1)

Mod#4 Mod#2

Mod#1

Module enabled/disabled monitoring window

Mod#5

Error information (node 1)

Mod# Error# Error message
3 1002 Memory is short

Data field

Node 4 Node 1 Node 2

WS

Alive signal
Fault information

PC

Fault occurrence
controller

Fault information

Detailed list

Detailed fault information window

When shifting from normal to
faulty status, Mod#3 box
changes its color.

Optional information

Register Contents
D000 4AFE

D004 0001
D008 29C6

Optional information window

Binary displaying of optional
information

Before this displaying, error messages
associated with error numbers must be
registered.

Mod#3

3(Mod#)

1002(Error#)

Optional
information

Alive signal
Fault information

Alive signal Alive signal

74

F.3 Specifications on error messages for system monitoring
tools

A system monitoring tool uses the error message files defined as follows to retrieve an error message
associated with an error number (al_err_list) from the received fault information. Devices that transmit
fault information shall create error message files associated with fault information and provide it to system
monitoring tool developers.

A system monitoring tool shall display an error number and module number as error information, if no file
matching the error name (al_err_name) of the fault information transmitted from a node or no error mes-
sage identified by the error number (al_err_list) is found.

The file shall be stored in a directory specified by a system monitoring tool.

"Vendor-name_Device-name" is an equivalent of al_os_name in the alive signal header.

 No: Error number, Error type, Error symbol

Msg: Error message (up to 1,024 characters)

Cause: Cause (up to 1,024 characters)

Action: Remedy (up to 1,024 characters)

: Repeats the above set as neces-
sary

:
:
:

- ASCII format
- Tabs are used for delim-

iting columns

"No:" : Fixed character string. Indicates an error number, error type and

error symbol may follow.
Error number : A decimal or hexadecimal starting 0x (0 to 65,535).
Error type : "E" = Error, "W" = Warning, "I" = Information
Error symbol : A symbol associated with an error number (optional).
"Msg:" : Fixed character string. Indicates that the following character string is

an error message.
"Cause:" : Fixed character string. Indicates that the following character string is

the cause of the error.
"Action:" : Fixed character string. Indicates that the following character string is

an remedy.

Figure 66 Error message file format

75

Appendix G (informative) Purpose of Autonomous Distrib-
uted System

G.1 Purpose of autonomous decentralized system

The autonomous decentralized system architecture meets wide range of systems, from small to large
decentralized systems, and integrates management of different components, such as control servers within
systems, workstations, personal computers, controllers and miscellaneous controlling devices, showing
synergistic effect by combining different models and cultures.
The autonomous decentralized system architecture was designed aiming the following four main purposes
and can deal with the diversification of user needs.

Figure 67 Autonomous decentralized system

Open and real time PCs integration Applied workstation

Trunk network

Integration of information/control
Integration of PCs/Workstations

Expansion to
controller
system

Expansion to
workstations/
UNIX

Expansion to
PC client/
server world

 Autonomous distributed system arvhitecture

- Easy integration of manufacturing, marketing and services
- Low-cost and quick introduction of new services

Flexble System Architecture

- Step-by-step system scalability starting from the system configuration
optimum to the current investment volume.

- Online system expandable/modifiable application software platform.

Small Start System Architecture

- Risk spreading by taking the full advantage of server-less system
- High system reliability

High-reliable System Architecture

- Open components (workstation or PCs) and support for different venders
controllers.

- Support for standard LAN (Ethernet)

Open System Architecture

76

G.2 Features of autonomous decentralized system

The autonomous decentralized system defined in the specifications has the following features:

- Rich communication types
A field where data consisting of specific characteristic information and information qualities flows is called
"Data Field." Each node multicast data to its upper data field so that other nodes within the same data field
can receive the same data. Independence of individual subsystems can be strengthen by dividing a system
into more than one data field, and expandability and serviceability can be improved. In addition to the
multicast communication feature, peer-to-peer communication feature is also provided between specific
nodes, allowing selecting communication features appropriate to communication characteristics between
nodes, such as downloading to a specific node.

- Data field management
Using alive signals allows autonomously collecting the status of devices connected to a data field and
program or hardware status within devices. The collected data helps managing and controlling the con-
figuration of devices or programs within devices.

- Fault monitoring
When a program or hardware within devices connected to a data field, fault information attached to alive
signals allows locating the fault point, determining the cause of the fault and monitoring the detailed infor-
mation on the fault from a PC.

- Test support
This allows testing the online system without affecting connection.

- Expandability
This allows easy step-by-step system expansion including adding nodes and building user programs online
without shutting down the existing online system.

77

Appendix H (informative) Purposes of Associative Array

H.1 Features

Using associative arrays, a message can be sent with data item names and a data type and other informa-
tion composing the message, improving self-description of a message.

Data can be retrieved and used by only specifying the set of TCD and data items.

Figure 68 Concept of message for associative array

The following features are available:

1) Easy interpretation of messages: Required data items can be retrieved without knowing entire message

structure.
2) Flexibility
3) Modularity: In the above example, given that AP1 and 3 have existed, and if AP3 requires new data "b,"

only making modification on AP2 and 3 allows operation without modifying AP1. If AP3 has been as-
sociated with data "a," "b," "c" and "d," AP1 and 2 can be created in stages (without modifying AP3).

4) Online update: When modifying message data structure, it can be updated without interrupting other
APs using the message (for adding or sorting data items).

5) Decreased TCDs
Data items can be selected for transmission. This allows enlarging the message structure assigned with
one TCD, and transmission with less number of TCDs is available.

AP2

Using different structures of messages is
available within a TCD.
- Different sequence of data items
- Different type and number of data items

Expansion

TCD#n a b c

TCD#n a b c d

AP1

AP3

78

H.2 Concept of This Implementation Draft

The implementation draft revision 2 proposed in the committee deliberation has been designed in the
manner where the conventional type message with fixed data structures and associative array type mes-
sage with variable data structures can be coexisted within a message to avoid the problems described in
the previous chapter. This incurred an opinion that the data section has different categories, the fixed and
variable parts, making the protocol complex.

Figure 69 Message structure of associative array implementation revision 2

In this implementation draft, self-explanatory has precedence over other elements, so the conventional type
message using fixed structures and the associative array type message using variable structures are sepa-
rately considered, that is, the MSTC header defines the type of a message and the following data section
determines how to interpret it.

Figure 70 Comparison between conventional and associative array types

ADP header

MSTC header

Fixed part

Expansion
part

D
a

ta
 s

e
ct

io
n

Contents
information

0

+64

ADP header

MSTC header

0

Application
data section

Data

Conventional type

Associative array type

Contents information

+
Data

79

When a conventional system without a MSTC header and a system using the protocol must be coexisted,
different data fields shall be assigned to them (recommendation) and the application working as a gateway
shall convert the protocol.

If the same data field is used, a TCD other than the TCD for existing messages shall be assigned to it and
the used protocol shall be determined by TCD.

Figure 71 Example of data field separation

 New system

DF#1

DF#2

Converted
by gateway

Existing message

Message using the protocol

Different TCD is assigned

Existing system

